Heat flow on plane GAF

Ching Wei Ho Joint work with Brian Hall, Jonas Jalowy and Zakhar Kabluchko

The 18th workshop on Markov processes and related topics

July 31, 2023

China	- \A/a:	11.
Ching	a vvei	пυ

Heat flow on GAF

The heat flow operator

(Thing Wei Ho	-					
	· · ·	b	201	10		0
	-				•••	-

2

The heat flow operator

• The heat flow operator $e^{-\frac{\tau}{2}\frac{d^2}{dz^2}}$ on an entire function F is defined by the power series

$$e^{-\frac{\tau}{2}\frac{d^2}{dz^2}}F(z) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{\tau}{2}\right)^n \frac{d^{2n}}{dz^{2n}}F(z)$$

for τ ranges in a disk on the complex plane.

- \bigcirc If F is a polynomial, this power series terminates.
- In general, the entire function F satisfies a certain growth rate.
- **③** We also write $F(\tau, z) = e^{-\frac{\tau}{2}\frac{d^2}{dz^2}}F(z)$. It satisfies the PDE

$$\frac{\partial F}{\partial \tau} = -\frac{1}{2} \frac{\partial^2 F}{\partial z^2}.$$

• Take
$$F(z) = z^k$$
.

2 The heat flow of F is the Hermite polynomial (with "variance" τ) of the same degree

$$F(\tau, z) = e^{-\frac{\tau}{2}\frac{d^2}{dz^2}} z^n = \tau^{n/2} H_n\left(\frac{z}{\sqrt{\tau}}\right).$$

4/21

Example 2 of the heat flow

) Example:
$$P_N(z) = (z-1)^{N/2}(z+1)^{N/2}$$
.

By [Kabluchko, 2022], the root distribution of

$$e^{-\frac{t}{2N}\frac{d^2}{dz^2}}P_N$$

converges to the same limiting eigenvalue distriburtion as the random matrix

$$egin{pmatrix} I_{N/2} & 0 \ 0 & -I_{N/2} \end{pmatrix} + \operatorname{GUE}.$$

• The large-N behavior of heat flow at time t/N connects to random matrix theory and free probability theory.

Main Question

Consider the plane GAF G.

How does G evolve under the heat flow operator

$$\exp\left(-\frac{\tau}{2}\frac{d^2}{dz^2}\right)?$$

What can we say about the evolution of zeros of G?

These questions are motivated by a consideration similar to the previous example, but with initial distribution on the complex plane, instead of on the real line.

Heat flow on the plane GAF

A ()			
('bing	101	0	-
	~~~	ы	
<u> </u>			 -

2

Define the plane GAF (or simply GAF) by

$$G(z) = \sum_{k=0}^{\infty} \xi_k \frac{z^k}{\sqrt{k!}}$$

where  $\xi_k$  are independent complex Gaussian random variables.

- 2 Fact: for every  $\varepsilon > 0$ ,  $|G(z)| \le C_{\varepsilon} \exp\left((\frac{1}{2} + \varepsilon)|z|^2\right)$  a.s.
- 3 This means G is a.s. of order 2 and of type 1/2.

#### Theorem (Hall–H.–Jalowy–Kabluchko, 2023)

Let  $\tau \in \mathbb{C}$  such that  $|\tau| < 1$ . The heat flow operator on G is well-defined a.s. and can be computed as the following.

• 
$$e^{-\tau \frac{\partial^2}{\partial z^2}} G(x) = \sum_{k=0}^{\infty} \frac{1}{k!} \left(-\frac{\tau}{2} \frac{\partial^2}{\partial z^2}\right)^k G(z)$$

2 If  $\tau = |\tau|e^{i\theta}$ , then

$$e^{-\tau \partial^2 / \partial z^2} G(z) = \frac{1}{\sqrt{2\pi |\tau|}} \int_{\mathbb{R}} G(i e^{i\theta/2} x) e^{-\frac{(-i e^{-i\theta/2} z - x)^2}{2|\tau|}} dx.$$

• I omit two other ways to compute the heat flow of G.

Ching	Wei	Ho
- 3		

### Distribution of zeros

- Distribution of zeros of G is approximately the roots of Weyl polynomial (thus, the distribution of zero is "uniform" with spacing of order 1).
- 2) What is the distribution of zeros of  $e^{-rac{ au}{2}rac{\partial^2}{\partial z^2}}G$ ?



#### Figure: Zeros of G

01.1	*** * * * *	
China	Wei Ho	

### Evolution of the distribution of zeros

#### Theorem (Hall–H.–Jalowy–Kabluchko, 2023)

$$\frac{\mathcal{Z}\left(e^{-\frac{\tau}{2}\frac{\partial^2}{\partial z^2}}G\right)}{\sqrt{1-|\tau|^2}} \stackrel{d}{=} \mathcal{Z}(G).$$



Figure: LHS: Rescaled zeros of  $e^{-\frac{\tau}{2}\frac{\partial^2}{\partial z^2}}G$ ; RHS: Zeros of G

('hing	MOL	
CHINE		1 10

# Reason of the evolution of distribution

**1** Define the random holomorphic function  $V_{\tau}G$  by

$$(V_{\tau}G)(z) = (1 - |\tau|^2)^{1/4} e^{\bar{\tau}z^2/2} \left( e^{-\frac{\tau}{2}\frac{\partial^2}{\partial z^2}} G \right) \left( z\sqrt{1 - |\tau|^2} \right).$$

- **2**  $\{V_{\tau}G(z)\}_z$  has the same distribution as  $\{G(z)\}_z$ . That is,  $V_{\tau}G$  is also a GAF.
- $\label{eq:since} \begin{tabular}{ll} \hline {\bf Since} \ (1-|\tau|^2)^{1/4}e^{\bar\tau z^2/2} \ \mbox{has no zero,} \end{tabular}$

$$\frac{\mathcal{Z}\left(e^{-\frac{\tau}{2}\frac{\partial^2}{\partial z^2}}G\right)}{\sqrt{1-|\tau|^2}} = \mathcal{Z}(V_{\tau}G) \stackrel{d}{=} \mathcal{Z}(G).$$

Ching Wei Ho

### **Evolution of zeros**

- That the distribution is invariant up to a scaling does not tell you how the zeros evolve!
- I How do the zeros evolve under heat flow?

13/21

A >

# **Evolution of zeros**

- That the distribution is invariant up to a scaling does not tell you how the zeros evolve!
- I How do the zeros evolve under heat flow?



Figure: Zero evolutions: plot each zero *a* with gray lines  $a + \tau \bar{a}$ .  $0 \le \tau \le 1$ .

	4		Ξ Ψ) <b>Ϥ</b> (Ψ
Ching Wei Ho	Heat flow on GAF	July 31, 2023	13/21

The zeros evolve approximately along the gray lines *a* + τ*ā*.
Want to understand the error

$$z(\tau) - (a + \tau \bar{a}).$$

< A >

**()** The notation  $z^b(\cdot)$  means the random holomorphic function

$$\left(e^{-\tau \frac{\partial^2}{\partial z^2}}G\right)(z^b(\tau)) = 0$$

when we condition on G(b) = 0 ( $z^b(0) = b$ ).

2 Under this notation,  $z^b(\cdot)$  is defined in a disk with random radius.

#### Theorem (Hall-H.-Jalowy-Kabluchko, 2023)

 $z^a(\tau) \stackrel{d}{=} a + \tau \bar{a} + z^0(\tau)$ 

China	Wei Ho
Ormig	

Want to understand the error

$$z^a(\tau) - (a + \tau \bar{a})$$

which has the same distribution as  $z^0(\tau)$ .

The next simultation computes this error starting at a; that is

$$a + [z^a(\tau) - (a + \tau \bar{a})].$$

16/21

### Evolution of a zero



Figure: Simulation of  $z^{a}(\tau) - \tau \overline{z^{a}(0)} \stackrel{d}{=} a + z^{0}(\tau)$ .

# A relation to SU(1,1)

$\sim$					
	<u>n i</u>	$n\alpha$	_ \/		$\sim$
				ve	

• • • • • • • •

æ

# A relation to SU(1,1)

**1** Recall that for all  $|\tau| < 1$ ,

$$(V_{\tau}G)(z) = (1 - |\tau|^2)^{1/4} e^{\bar{\tau}z^2/2} \left( e^{-\frac{\tau}{2}\frac{\partial^2}{\partial z^2}} G \right) \left( z\sqrt{1 - |\tau|^2} \right)$$

is also a GAF.

² Can obtain this result by the metaplectic representation of SU(1,1)on the Hilbert space  $HL^2(\mathbb{C})$  of entire functions F satisfying

$$\int_{C} |F(w)|^2 \frac{e^{-|w|^2}}{\pi} \, d^2 z < \infty,$$

called the Segal-Bargmann space.

The functions

$$\frac{z^n}{\sqrt{n!}}, \quad n \ge 0$$

form an orthonormal basis of the Segal–Bargmann space  $HL^2(\mathbb{C})$ .

2 The GAF

$$G(z) = \sum_{n=0}^{\infty} \xi_n \frac{z^n}{\sqrt{n!}}$$

can be heuristically thought to be Gaussian distributed on  $HL^2(\mathbb{C})$ .

**③** Thus, heuristically, given any unitary operator U on  $HL^2(\mathbb{C})$ , U(G) is again a GAF.

# A relation to SU(1,1)

**()** Given an 
$$A \in SU(1,1)$$
 of the form

$$A = \begin{pmatrix} p & q \\ \bar{q} & \bar{p} \end{pmatrix},$$

define a projective unitary representation on the Segal–Bargmann space  $HL^2(\mathbb{C})$  by

$$V(A)f(z) = \pm \frac{1}{\sqrt{p}} \int_{\mathbb{C}} \exp\left(\frac{1}{2}\frac{\bar{q}}{p}z^2 - \frac{1}{2}\frac{q}{p}\bar{w}^2 + \frac{1}{p}z\bar{w}\right) f(w)\frac{e^{-|w|^2}}{\pi} d^2w.$$
  
Then  $(V, f)(z) = (1 - |\tau|^2)^{1/4}e^{\bar{\tau}z^2/2} \left(e^{-\frac{\tau}{2}\frac{\partial^2}{\partial z^2}}f\right) \left(z, \sqrt{1 - |\tau|^2}\right)$  can

Then 
$$(V_{\tau}f)(z) = (1 - |\tau|^2)^{1/4} e^{\tau z^2/2} \left( e^{-\frac{1}{2}} \frac{1}{\partial z^2} f \right) \left( z\sqrt{1 - |\tau|^2} \right)$$
 can be obtained by

$$V_{\tau}f = V(A_{\tau})f$$

where

$$A_{\tau} = \frac{1}{\sqrt{1 - |\tau|^2}} \begin{pmatrix} 1 & \tau \\ \bar{\tau} & 1 \end{pmatrix}.$$

. .